Remote-sensing reflectance (R(rs)), which is defined as the ratio of water-leaving radiance (L(w)) to downwelling irradiance just above the surface (E(d)(0⁺)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L(w) is commonly measured in the field or by satellite sensors at convenient angles, while E(d)(0⁺) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of R(rs) (or L(w)) resulting from a change of water constituents, the angular effects of R(rs) (or L(w)) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water's inherent optical properties (IOPs). It can be used to derive IOPs from angular R and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular R(rs) to retrieve IOPs and to remove the angular variation of R(rs).

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.50.003155DOI Listing

Publication Analysis

Top Keywords

angular effects
8
water-leaving radiance
8
water constituents
8
measured field
8
system centered
8
system applied
8
angular
6
rrs
5
system
5
inherent-optical-property-centered approach
4

Similar Publications

Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.

Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.

View Article and Find Full Text PDF

Electroconvulsive therapy modulates brain functional stability in patients with major depressive disorder.

J Affect Disord

January 2025

Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei 230022, China; Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China. Electronic address:

Background: Electroconvulsive therapy (ECT) is an effective treatment for patients with major depressive disorder (MDD), but the underlying neuromodulatory mechanisms remain largely unknown. Functional stability represents a newly developed method based on the dynamic functional connectivity framework. This study aimed to explore ECT-evoked changes in functional stability and their relationship with clinical outcomes.

View Article and Find Full Text PDF

Optical diffraction tomography using a self-reference module.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland.

Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol.

View Article and Find Full Text PDF

We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!