The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e., α-Tm D175N TG, or Tm175). For acute effects, intravenously injected NIC increased heart rate, left ventricular (LV) pressure, and the maximal rate of LV pressure increase (+dP/dt) in non-TG (NTG) and Tm175 mice; however, Tm175 showed a significantly smaller increase in the maximal rate of LV pressure decrease (-dP/dt) compared with NTGs. Western blots revealed phosphorylation of phospholamban Ser16 and Thr17 residue increased in NTG mice following NIC injection but not in Tm175 mice. In contrast, phosphorylation of troponin I at serine residues 23 and 24 increased equally in both NTG and Tm175. Thus the attenuated increase in relaxation in Tm175 mice following acute NIC appears to result primarily from attenuated phospholamban phosphorylation. Chronic NIC administration (equivalent to smoking 2 packs of cigarettes/day for 4 mo) also increased +dP/dt in NTG and Tm175 mice compared with chronic saline. However, chronic NIC had little effect on heart rate, LV pressure, -dP/dt, LV wall and chamber dimensions, or collagen content for either group of mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197430 | PMC |
http://dx.doi.org/10.1152/ajpheart.00277.2010 | DOI Listing |
Am J Physiol Heart Circ Physiol
October 2011
Department of Physiology and Biophysics, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e.
View Article and Find Full Text PDFPhysiol Genomics
November 2006
Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. We previously developed two transgenic mouse models that carry FHC-associated mutations in alpha-tropomyosin (TM): FHC alpha-TM175 mice show patchy areas of mild ventricular disorganization and limited hypertrophy, whereas FHC alpha-TM180 mice exhibit severe hypertrophy and fibrosis and die within 6 mo. To obtain a better understanding of the molecular mechanisms associated with the early onset of cardiac hypertrophy, we conducted a detailed comparative analysis of gene expression in 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!