A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter(-1), and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 10(3) viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165396 | PMC |
http://dx.doi.org/10.1128/AEM.00393-11 | DOI Listing |
Int J Gen Med
January 2025
Department of Respiratory and Critical Care Medical Department Infectious Diseases Ward, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: This study examines the distribution characteristics of pathogenic bacteria in respiratory infections and their relationship with inflammatory markers to guide clinical drug use.
Methods: We selected 120 patients with lower respiratory tract infection in the electronic medical record system of Xinjiang Provincial People's Hospital from March 2019 to March 2023 for a case-control study. Using Indirect Immunofluorescence Antibody test(IFA), blood routine, C-reactive Protein (CRP), and High-sensitivity C-reactive Protein(hsCRP), we detected nine respiratory pathogens (Respiratory syncytial virus; Influenza A virus; Influenza B virus; Parainfluenza virus; Adenovirus; Mycoplasma pneumoniae; Chlamydia pneumoniae; Legionella pneumophila type 1; Rickettsia Q) in all patients and analyzed their distribution and correlation.
Biomolecules
January 2025
Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.
View Article and Find Full Text PDFFront Immunol
January 2025
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!