Understanding the mechanistic aspects involved in sensitization by chemicals will help to develop relevant preventive strategies. Many potential sensitizers are not directly immunogenic but require activation outside or inside the skin by nonenzymatic oxidation (prehaptens) or metabolic transformation (prohaptens) prior to being able to induce an immune response. This necessary activation step has not yet been actively integrated into a cell line-based prediction approach. We cocultured HaCaT keratinocytes with THP-1 as dendritic cell-like cells allowing intercellular interactions. The sensitizing potential was determined by analyzing differences in the expression of CD86, CD40, and CD54 on cocultured THP-1 cells. This new assay setup allowed (1) to distinguish irritants from allergens without influencing cell viability and (2) to discriminate pre/prohaptens from haptens. Under coculture conditions, the prohaptens eugenol, 2-methoxy-4-methylphenol, and benzo[a]pyrene induced a significantly higher upregulation of CD86 expression on THP-1. In agreement with the hapten concept, responses to 2,4-dinitrochlorobenzene, Bandrowski's base, and the prehapten isoeugenol were not significantly modified. Inhibition of cytochrome P450 or NAD(P)H:quinone oxidoreductase (NQO1) activity reduced the prohapten-mediated upregulation of CD86 on cocultured THP-1 cells. This coculture assay allowing cross talk between HaCaT and THP-1 cells appears to be suitable for the detection of prohaptens, is reproducible, easy to perform, and avoids donor variations. In addition, this assay is a promising approach to understand the impact of cross talk on the prediction of sensitization and once established may be integrated in a future in vitro toolbox to detect potential skin sensitizers and may thus contribute to reduce animal testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfr174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!