Development of novel aptamer sensor strategies for rapid and selective assays of protein biomarkers plays crucial roles in proteomics and clinical diagnostics. Herein, we have developed a novel aptamer sensor strategy for homogeneous detection of protein targets based on fluorescence protection assay. This strategy is based on our reasoning that interaction of aptamer with its protein target may dramatically increase steric hindrance, which protects the fluorophore, fluorescein isothiocyannate (FITC), labeled at the binding pocket from accessing and quenching by the FITC antibody. The aptamer sensor strategy is demonstrated using a model protein target of immunoglobulin E (IgE), a known biomarker associated with atopic allergic diseases. The results reveal that the aptamer sensor shows substantial (>6-fold) fluorescence enhancement in response to the protein target, thereby verifying the mechanism of fluorescence protection. Moreover, the aptamer sensor displays improved specificity to other co-existing proteins and a desirable dynamic range within the IgE concentration from 0.1 to 50 nM with a readily achieved detection limit of 0.1 nM. Because of great robustness, easy operation and scalability for parallel assays, the developed homogeneous fluorescence protection assay strategy might create a new methodology for developing aptamer sensors in sensitive, selective detection of proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185441 | PMC |
http://dx.doi.org/10.1093/nar/gkr559 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Beijing Institute of Technology School of Chemistry and Chemical Engineering, China. Electronic address:
Photonic crystal-based aptasensors for viral proteins detection offer the advantage of producing visible readouts. However, they usually suffer from limited sensitivity and high non-specific background noise. A significant contributing factor to these issues is the use of fixed-conformation aptamers in these sensors.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China.
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.
A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.
View Article and Find Full Text PDFNanoscale
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!