Methyl l-glycero-α-d-manno-heptopyranoside was synthesized in good yield by a Fischer-type glycosylation of the heptopyranose with methanol in the presence of cation-exchange resin under reflux and microwave conditions, respectively. The compound crystallized from 2-propanol in an orthorhombic lattice of space group P2(1)2(1)2 showing a comparatively porous structure with a 2-dimensional O-H⋯O hydrogen bond network. As model compounds for the side chain domains of the inner core structure of bacterial lipopolysaccharide, l-glycero-α-d-manno-heptopyranosyl-(1→7)-l-glycero-d-manno-heptopyranose and the corresponding disaccharide methyl α-glycoside were prepared. The former compound was generated via glycosylation of a benzyl 5,6-dideoxy-hept-5-enofuranoside intermediate followed by catalytic osmylation and deprotection. The latter disaccharide was efficiently synthesized in good yield by a straightforward coupling of an acetylated N-phenyltrifluoroacetimidate heptopyranosyl donor to a methyl 2,3,4,6-tetra-O-acetyl heptopyranoside acceptor derivative followed by Zemplén deacetylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252701 | PMC |
http://dx.doi.org/10.1016/j.carres.2011.05.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!