Underground environments are increasingly recognized as reservoirs of faunal diversity. Extreme environmental conditions and limited dispersal ability of underground organisms have been acknowledged as important factors promoting divergence between species and conspecific populations. However, in many instances, there is no correlation between genetic divergence and morphological differentiation. Lucifuga Poey is a stygobiotic fish genus that lives in Cuban and Bahamian caves. In Cuba, it offers a unique opportunity to study the influence of habitat fragmentation on the genetic divergence of stygobiotic species and populations. The genus includes four species and one morphological variant that have contrasting geographical distributions. In this study, we first performed a molecular phylogenetic analysis of the Lucifuga Cuban species using mitochondrial and nuclear markers. The mitochondrial phylogeny revealed three deeply divergent clades that were supported by nuclear and morphological characters. Within two of these main clades, we identified five lineages that are candidate cryptic species and a taxonomical synonymy between Lucifuga subterranea and Lucifuga teresinarum. Secondly, phylogeographic analysis using a fragment of the cytochrome b gene was performed for Lucifuga dentata, the most widely distributed species. We found strong geographical organization of the haplotype clades at different geographic scales that can be explained by episodes of dispersal and population expansion followed by population fragmentation and restricted gene flow. At a larger temporal scale, these processes could also explain the diversification and the distribution of the different species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2011.06.015 | DOI Listing |
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.
Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.
View Article and Find Full Text PDFGenetics
January 2025
Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland.
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Forestry, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina.
Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.
View Article and Find Full Text PDFMolecules
January 2025
Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
Safflower ( L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!