The objective of this study was to prepare silk fibroin SF microspheres containing the enhanced green fluorescent protein (EGFP) by using a novel ultra-fine particle processing system (UPPS) and to evaluate the microspheres as possible carriers for long-term delivery of sensitive biologicals. The drug content, encapsulation efficiency, and in vitro release were evaluated by Microplate Absorbance Reader. The particle size distribution and morphology of the microspheres were analyzed by Malvern Master Sizer 2000 and scanning electron microscopy. The distribution of EGFP and the interactions between SF and EGFP were investigated by Confocal Laser Scanning Microscopy, FTIP, Raman and NMR spectroscopy. The results showed that spherical microspheres with narrow size distribution, glossy and dense surface were successfully manufactured by using UPPS technology and over 95% of EGFP encapsulation efficiency and uniform drug distribution in the microspheres were achieved. Furthermore, a burst free and sustained release of encapsulated EGFP for a period of 50 days in deionized water was obtained. In conclusion, the novel UPPS technology could be used to manufacture SF matrix microspheres as a potential long-term protein delivery system to improve patient compliance and convenience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2011.06.041DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
fibroin microspheres
8
novel ultra-fine
8
ultra-fine particle
8
particle processing
8
processing system
8
encapsulation efficiency
8
size distribution
8
upps technology
8
microspheres
7

Similar Publications

Silk-based biomaterials for tissue engineering.

Adv Colloid Interface Sci

January 2025

Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

Tissue engineering (TE) involves repairing, replacing, regeneration, or improving the function of tissues and organs by combining cells, growth factors and scaffold materials. Among these, scaffold materials play a crucial role. Silk fibroin (SF), a natural biopolymer, has been widely used in the TE field due to its good biodegradability, biocompatibility, and mechanical properties attributed to its chemical composition and structure.

View Article and Find Full Text PDF

Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway.

Colloids Surf B Biointerfaces

January 2025

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China. Electronic address:

Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Background/purpose: Dental implants can restore both function and aesthetics in edentulous areas. However, the absence of cushioning mechanical behavior in implants may limit their clinical performance and reduce the long-term survival rates. This study aimed to establish an implant cushion mechanism that mimicked the natural periodontal ligament, utilizing the properties of composite hydrogels.

View Article and Find Full Text PDF

Biopolymer-Derived Carbon Materials for Wearable Electronics.

Adv Mater

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!