Introduction: Ultrasound (US) contrast agents based on microbubbles (MBs) are being investigated as platforms for drug and gene delivery. A methodology for determining the distribution and fate of modified MBs quantitatively in vivo can be achieved by tagging MBs directly with (99m)Tc. This creates the opportunity to employ dual-modality imaging using both US and small animal SPECT along with quantitative ex vivo tissue counting to evaluate novel MB constructs.
Methods: A (99m)Tc-labeled biotin derivative ((99m)TcL1) was prepared and incubated with streptavidin-coated MBs. The (99m)Tc-labeled bubbles were isolated using a streptavidin-coated magnetic-bead purification strategy that did not disrupt the MBs. A small animal scintigraphic/CT imaging study as well as a quantitative biodistribution study was completed using (99m)TcL1 and (99m)Tc-labeled bubbles in healthy C57Bl-6 mice.
Results: The imaging and biodistribution data showed rapid accumulation and retention of (99m)Tc-MBs in the liver (68.2±6.6 %ID/g at 4 min; 93.3±3.2 %ID/g at 60 min) and spleen (214.2±19.7 %ID/g at 4 min; 213.4±19.7 %ID/g at 60 min). In contrast, (99m)TcL1 accumulated in multiple organs including the small intestine (22.5±3.6 %ID/g at 4 min; 83.4±5.9 %ID/g at 60 min) and bladder (184.0±88.1 %ID/g at 4 min; 24.2±17.7 %ID/g at 60 min).
Conclusion: A convenient means to radiolabel and purify MBs was developed and the distribution of the labeled products determined. The result is a platform which can be used to assess the pharmacokinetics and fate of novel MB constructs both regionally using US and throughout the entire subject in a quantitative manner by employing small animal SPECT and tissue counting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2011.04.008 | DOI Listing |
Int J Pharm
January 2025
Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China. Electronic address:
Amyotrophic lateral sclerosis (ALS) presents a substantial challenge due to its complex nature, limited effective treatment options, and modest benefits from current therapies in slowing disease progression. This study explores the potential of intranasal (IN) delivery to enhance the CNS delivery of riluzole (RLZ), a standard ALS treatment which is subject to blood-brain barrier efflux mechanisms. Additionally, the impact of elacridar (ELC), an efflux pump inhibitor, on IN RLZ CNS bioavailability was examined.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
Purpose: CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Fibroblast activation protein (FAP), which is overexpressed in cancer-associated fibroblasts (CAFs), represents a promising target for cancer diagnosis and therapy. Hypoxia is a common feature of solid tumors. A bivalent agent, DOTA-NI-FAPI-04 (), was developed by incorporating hypoxia-sensitive nitroimidazole (NI) into the FAP-targeting agent FAPI-04.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!