AI Article Synopsis

Article Abstract

Although plantar pressure measurement systems are being used increasingly during gait analyses to investigate foot orthotics, there is limited information describing test-retest reliability of such measurements. Objectives of this study were to (1) examine the test-retest reliability of lateral heel pressure (LHP) and centre of pressure (COP) during walking with and without lateral heel wedges, and (2) evaluate the effects of 4° and 8° lateral heel wedges on the magnitude of LHP, the pathway of the COP and the peak external knee adduction moment (KAM) in subjects with and without knee osteoarthritis (OA). Twenty-six subjects, 12 patients with knee OA and 14 healthy subjects, were evaluated during three lateral heel wedge conditions (control, 4° and 8°) with standardized footwear. Three-dimensional analyses of gait with optical motion capture, floor-mounted force plate and in-shoe plantar pressure were completed on two occasions. Intraclass correlation coefficients (ICC(2, 1)) for LHP were excellent (0.79-0.83) while ICCs for COP in the medial-lateral and anterior-posterior directions were more variable (0.66-0.86). Reliability was slightly diminished when using heel wedges. Standard errors of measurement suggested considerable day-to-day variability in an individual's measures. Lateral heel wedges significantly (p<0.001) increased LHP, shifted COP anteriorly and laterally, and decreased the KAM. No significant differences were observed between subjects with and without OA. Although the day-to-day variability appears too large to confidently evaluate changes in individual patients, and decreases in reliability with increases in wedge size indicate caution, these results suggest in-shoe measurement of LHP and COP are appropriate for use in studies evaluating biomechanical effects of foot orthoses for knee OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2011.06.008DOI Listing

Publication Analysis

Top Keywords

lateral heel
24
heel wedges
20
plantar pressure
12
in-shoe plantar
8
patients knee
8
knee osteoarthritis
8
test-retest reliability
8
4° 8°
8
heel
7
lateral
6

Similar Publications

This study explored how systematic changes in running shoe degradation and foot inversion alter the distribution and peak value of heel pressure and calcaneus stress, as well as the total stress-concentration exposure (TSCE) within the calcaneal bone. A foot-shoe finite element model was employed and three shoe wear conditions (new shoe (CON), moderate worn shoe (MWSC), excessive worn shoe (EWSC)) coupled with three foot inversion angles (0°, 10°, 20°) were further modulated. Simulations were conducted at the impact peak instant during running.

View Article and Find Full Text PDF

Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.

View Article and Find Full Text PDF

Purpose: The aim of this study was to propose a lateral oscillating device for the prevention of pressure ulcers by understanding the mechanisms of tissue protection in healthy individuals during prolonged decubitus. We also sought to determine the optimal time interval for oscillation, considering peak pressure peaks and tolerable pressure limits as a function of individual characteristics such as age, weight, height, gender, and BMI.

Methods: A quasi-experimental, descriptive and analytical observational study was conducted between January 2022 and June 2023 with a sample of 25 healthy volunteers.

View Article and Find Full Text PDF

Background: Trimming is critical for a functioning equine hoof. Pressure distribution provides information on loading; however, information on the effects of trimming on pressure distribution is lacking.

Objectives: To describe the pressure changes of equine fore feet following trimming.

View Article and Find Full Text PDF

Biokinetic gait differences between Hallux valgus patients and asymptomatic subjects.

Gait Posture

December 2024

Internal Medicine Research Unit, Department of Internal Medicine, Hospital Italiano de Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Hospital Italiano de Buenos Aires, Argentina.

Background: Hallux valgus (HV) is the most prevalent foot condition, associated with a decline in quality of life and a high rate of complications. Pedobarography can be a diagnostic tool, although controversies exist due to differences in measurement scales, type of capture, software, and hardware used. Deformity level differences have not been thoroughly explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!