Background: Accurate knowledge of the spinal structural functions is critical to understand the biomechanical factors that affect spinal pathology. Many studies have investigated the human vertebral motion both in vitro and in vivo. However, determination of in vivo motion of the vertebrae under physiologic loading conditions remains a challenge in biomedical engineering because of the limitations of current technology and the complicated anatomy of the spine.
Methods: For in vitro validation, a human lumbar specimen was imbedded with steel beads and moved to a known distance by an universal testing machine (UTM). The dual fluoroscopic system was used to capture the spine motion and reproduce the moving distance. For in vivo validation, a living subject moved the spine in various positions while bearing weight. The fluoroscopes were used to reproduce the in vivo spine positions 5 times. The standard deviations in translation and orientation of the five measurements were used to evaluate the repeatability of technique. The accuracy of vertebral outline matching with metallic marks matching technology was compared.
Results: The translation positions of the human lumbar specimen could be determined with a mean accuracy less than 0.35 mm and a mean repeatability 0.36 mm for the image matching technique. The repeatability of the method in reproducing in vivo human spine six degrees of freedom (6DOF) kinematics was less than 0.43 mm in translation and less than 0.65° in rotation. The accuracy of metallic marks and vertebral outline matching did not show significant difference.
Conclusions: Combining a dual fluoroscopic and computerized tomography imaging technique was accurate and reproduceable for noninvasive measurement of spine vertebral motion. The vertebral outline matching technique could be a useful technique for matching of vertebral positions and orientations which can evaluate and improve the efficacy of the various surgical treatments.
Download full-text PDF |
Source |
---|
J Am Acad Orthop Surg Glob Res Rev
January 2025
From the Department of Orthopaedic Surgery, Singapore General Hospital, Singapore (Dr. Loh, Dr. Ling, Dr. Jiang, and Lim) and the Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore (Dr. Goh).
We report a case of pulseless electrical activity (PEA) associated with profound hypermagnesemia immediately after cementation of a novel magnesium-based cement in spine surgery. During T8 to T12 posterior instrumentation and decompression laminectomy for vertebral metastasis secondary to lung cancer, a 61-year-old Chinese woman developed sudden hypotension and went into PEA immediately after injection of a novel magnesium-based cement. Intraoperative fluoroscopic imaging did not show any notable cement extravasation.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Arthroscopic repair with the biceps rerouting (BR) technique has been determined to lead to promising clinical and biomechanical outcomes for treating large-to-massive rotator cuff tears (LMRCTs). However, the in vivo effects of BR on glenohumeral kinematics during functional shoulder movements have not been fully elucidated.
Purpose: To investigate whether BR provides a better restoration of shoulder kinematics compared with conventional rotator cuff repair (RCR).
Cardiol Res
December 2024
Department of Cardiology, Fukuoka University Hospital, Fukuoka, Japan.
An 83-year-old man underwent dual-chamber pacemaker placement for complete atrioventricular block at another hospital. The active-fixation ventricular lead was positioned on the free wall of the anterior right ventricle. Ventricular pacing failure occurred on the day after pacemaker implantation, and fluoroscopy revealed right ventricular (RV) lead perforation.
View Article and Find Full Text PDFMed Eng Phys
December 2024
Faculty of Sports Science, Ningbo University, Ningbo, PR China. Electronic address:
This study explored the relationship between the foot arch stiffness and windlass mechanism, focusing on the contribution of the posterior transverse arch. Understanding the changing characteristics of foot stiffness is critical for providing a scientific basis for treating foot-related diseases. Based on a healthy male's computed tomography, kinematic, and dynamics data, a foot musculoskeletal finite element model with a dorsiflexion angle of 30°of metatarsophalangeal joint was established.
View Article and Find Full Text PDFClin Podiatr Med Surg
January 2025
Private Practice, Blitz Footcare, 800A 5th Avenue, Suite 403, New York, NY 10065, USA; Private Practice, Blitz Footcare, 435 N. Roxbury Drive, Penthouse, Beverly Hills, CA 90210, USA. Electronic address:
The revival of "new" minimally invasive bunion surgery (MIBS) is made possible as a laparoscopic-like fluoroscopically guided procedure using new instrumentation, advanced osseous realignment techniques and procedure-specific orthopedic hardware. Bunions of all severities can be treated with MIBS with a functional walking recovery in a small surgical shoe. Realignment occurs through a subcapital osteotomy with metatarsal head shifts that are stabilized by a single or dual metatarsal MIBS screw(s) that span a resultant osseous defect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!