The infrared spectra of proline-rich proteins display a strong band in the 1450 cm(-1) region. In the literature, this band has been assigned either to the deformation modes of the CH(2) and CH(3) groups or to the CN stretching mode of proline residues. In order to establish the correct assignment of this band, the impact of proline vibrations in a polypeptide chain is studied and ab initio calculations are performed for a model molecule (I) containing a repeat unit of polyproline. A strong band is effectively calculated in the 1450 cm(-1) region and mostly assigned to CN stretching, whereas, due to the absence of the N-H bond, there is no amide II band. These results are in good agreement with the spectral features observed in the Fourier transform infrared (FT-IR) spectra of gliadins. Moreover, the spectral shifts calculated when a water molecule is complexed with (I) are consistent with the hydration effect observed in the experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1366/11-06284DOI Listing

Publication Analysis

Top Keywords

initio calculations
8
proline vibrations
8
infrared spectra
8
spectra proline-rich
8
proline-rich proteins
8
strong band
8
1450 cm-1
8
cm-1 region
8
band
5
calculations proline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!