All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989140 | PMC |
http://dx.doi.org/10.3109/10428194.2011.603449 | DOI Listing |
Immunogenetics
January 2025
Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico.
Unlike other mammals, bats serve as natural reservoirs for several highly pathogenic viruses without exhibiting symptoms of infection. Recent research has explored the complex mechanisms underlying the balance between bats' antiviral defenses and their pathological responses. However, the evolution of the molecular drivers behind bats' antiviral strategies remains largely unknown.
View Article and Find Full Text PDFJ Invest Dermatol
December 2024
University of Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France. Electronic address:
CLEC12B is a C-type lectin receptor involved in the inhibition of natural killers-mediated cytotoxicity. We have previously shown that CLEC12B is predominantly expressed on melanocytes, inhibits melanin production and pigmentation as well as proliferation of melanoma. To date, the role of CLEC12B in skin immunity is unknown.
View Article and Find Full Text PDFInflammation
December 2024
Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.
Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA; University of California, Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA.
Altered activity of major immunoregulatory pathways has been reported in major depressive disorder (MDD) and is thought to underlie the elevations in circulating inflammatory mediators present in a subgroup of patients. However, the drivers of these changes in gene expression remain unclear. One potential modulator of immune function is viral infection.
View Article and Find Full Text PDFJ Exp Med
October 2024
Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!