AI Article Synopsis

  • Novel gold nanoparticles (AuNPs) encapsulated in conductive polymer were developed to create biosensors for detecting inducible nitric oxide synthase (iNOS), with a focus on the synthesized 2,2':5',5″-terthiophene-3'-benzoic acid (TTBA) monomer.
  • The study explored the impact of AuNP size and TTBA film thickness on electrode conductivity, demonstrating efficient electrochemical responses to iNOS using techniques like cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
  • Results showed a linear calibration plot for iNOS concentration ranging from 0.001-0.02 μg/mL, with a sensitivity of

Article Abstract

Novel nanostructures of gold nanoparticle (AuNP) encapsulated-conductive polymer have been developed to study biosensor probe materials and utilized to detect the concentration of inducible nitric oxide synthase (iNOS). A 2,2':5',5″-terthiophene-3'-benzoic acid (TTBA) monomer was synthesized and self-assembled on gold nanoparticles (AuNPs). The size effects of the AuNPs and TTBA monomer film thickness on the electrode conductivity were examined. Anti-iNOS antibody was covalently bound on an encapsulated-AuNPs polymer layer with self-assembled TTBA. The immunocomplex formation between iNOS and anti-iNOS was directly observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This study looked at the applicability of the self-assembled TTBA layer where the results indicated an efficient electrochemical response toward iNOS. The calibration plot of the current response vs. iNOS concentration exhibited a linear relationship in the range of 0.001-0.02 μg/mL. The calibration sensitivity of iNOS was 59.4 ± 0.3 mV/μg mL(-1). The detection limit of iNOS was determined to be 0.20 ± 0.04 ng/mL based on five time measurements (95% confidence level, k = 3, n = 5). Further results show that AuNP-encapsulated conductive polymers are good nanostructured materials as biosensor probes and have a potential application in cell biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac2006558DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
inducible nitric
8
nitric oxide
8
oxide synthase
8
ttba monomer
8
self-assembled ttba
8
response inos
8
inos
6
electropolymerized self-assembled
4
self-assembled layer
4

Similar Publications

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF

This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping.

View Article and Find Full Text PDF

Quorum quenching nanoparticles against wound pathogens - A scoping review.

Med J Malaysia

January 2025

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Introduction: Quorum sensing (QS) enables bacteria to coordinate colony-wide activities, including those associated with infections. Quorum quenching (QQ) inhibits QS and is a promising method for controlling bacterial infections. Several In vitro experiments have been conducted to identify nanoparticles (NPs) as potential quorum quenching inhibitors.

View Article and Find Full Text PDF

Self-assembled gold nanoparticles (Au-NPs) possess distinctive properties that are highly desirable in diverse nanotechnological applications. This study meticulously explores the size-dependent behavior of Au-NPs under an electric field, specifically focusing on sizes ranging from 5 to 40 nm, and their subsequent assembly into 2D monolayers on an n-type silicon substrate. The primary objective is to refine the assembly process and augment the functional characteristics of the resultant nanostructures.

View Article and Find Full Text PDF

A DNA origami-based enzymatic cascade nanoreactor for chemodynamic cancer therapy and activation of antitumor immunity.

Sci Adv

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Chemodynamic therapy (CDT) is a promising and potent therapeutic strategy for the treatment of cancer. We developed a DNA origami-based enzymatic cascade nanoreactor (DOECN) containing spatially well-organized Au nanoparticles and ferric oxide (FeO) nanoclusters for targeted delivery and inhibition of tumor cell growth. The DOECN can synergistically promote the generation of hydrogen peroxide (HO), consumption of glutathione, and creation of an acidic environment, thereby amplifying the Fenton-type reaction and producing abundant reactive oxygen species, such as hydroxyl radicals (•OH), for augmenting the CDT outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!