Biochemical characterization of allantoinase from Escherichia coli BL21.

Protein J

Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan.

Published: August 2011

Bacterial allantoinase (ALLase; EC 3.5.2.5), which catalyzes the conversion of allantoin into allantoate, possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. Here, we characterized ALLase from Escherichia coli BL21. Purified recombinant ALLase exhibited no activity but could be activated when preincubating with some metal ions before analyzing its activity, and was in the order: Mn(2+)- ≫ Co(2+)- > Zn(2+)- > Ni(2+)- > Cd(2+)- ~Mg(2+)-activated enzyme; however, activity of ALLase (Mn(2+)-activated form) was also significantly inhibited with 5 mM Co(2+), Zn(2+), and Cd(2+) ions. Activity of Mn(2+)-activated ALLase was increased by adding the reducing agent dithiothreitol (DTT), but was decreased by treating with the sulfhydryl modifying reagent N-ethylmaleimide (NEM). Inhibition of Mn(2+)-activated ALLase by chelator 8-hydroxy-5-quinolinesulfonic acid (8-HQSA), but not EDTA, was pH-dependent. Analysis of purified ALLase by gel filtration chromatography revealed a mixture of monomers, dimers, and tetramers. Substituting the putative metal binding residues His59, His61, Lys146, His186, His242, and Asp315 with Ala completely abolished the activity of ALLase, even preincubating with Mn(2+) ions. On the basis of these results, as well as the pH-activity profile, the reaction mechanism of ALLase is discussed and compared with those of other cyclic amidohydrolases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-011-9343-zDOI Listing

Publication Analysis

Top Keywords

allase
9
escherichia coli
8
coli bl21
8
metal ions
8
activity allase
8
mn2+-activated allase
8
activity
5
biochemical characterization
4
characterization allantoinase
4
allantoinase escherichia
4

Similar Publications

Article Synopsis
  • * The study focused on leaf extracts using acetone, revealing significant cytotoxic effects on various cancer cell lines, particularly B16F10 melanoma cells, and enhanced effects when combined with the drug 5-fluorouracil.
  • * Key metabolites were identified, with plumbagin and stigmast-5-en-3-ol emerging as potential inhibitors of ALLase, suggesting that N. miranda could play a role in future medical applications.
View Article and Find Full Text PDF

Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer or dimer. Here, we report and analyze two crystal structures of the eukaryotic DHOase (ScDHOase) complexed with malate.

View Article and Find Full Text PDF

Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!