The present work delineates the combinatorial approach of firstly, creation of a centralized data-set comprising signalling proteins identified on the basis of altered expression, such as over-expression or repression of a set of signalling protein(s) leading to the cause of the disease, which is based on published reports screened through Pubmed and secondly, in the in silico creation of novel lead (drug) molecules and docking of identified signalling biomarkers using such drugs to investigate possibility of their future application in the model systems eventually. EPAC (Exchange Protein Activated by cAMP) emerges as a signalling biomarker in cases studied presently. Brefeldin, the known inhibitor of EPAC, though the mechanism yet unexplored, has been the molecule used as the pharmacophore for creation of lead drug molecule. Various modifications have been incorporated into the pharmacophore to increase the hydrophobic interactions for increasing the binding efficiency of the generated lead molecule. Side-chain modifications of the pharmacophore and refinement of data through firedock upon docking of EPAC with the modified pharmacophore yielded best results on the bases of atomic contact energy, van der Waal and partial electrostatic interactions as well as additional estimations of the binding free energy. Modifications of CH3 at C15 with COOH and H at C2 with OH in brefeldin showed the best docking results on the basis of protein-drug interaction parameters. The present work provides a clue in rational design of EPAC inhibitors which could be developed as drug lead in combating CVD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124798 | PMC |
http://dx.doi.org/10.6026/97320630006176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!