We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1205983 | DOI Listing |
Phys Rev Lett
December 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
We revisit supernova (SN) bounds on a hidden sector consisting of millicharged particles χ and a massless dark photon. Unless the self-coupling is fine-tuned to be small, rather than exiting the SN core as a gas, the particles form a relativistic fluid and subsequent dark QED fireball, streaming out against the drag due to the interaction with matter. Novel bounds due to excessive energy deposition in the mantle of low-energy supernovae can be obtained.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
LAPTh, Université Savoie Mont-Blanc et CNRS, 74941 Annecy, France.
The duration of the neutrino burst from the supernova event SN 1987A is known to be sensitive to exotic sources of cooling, such as axions radiated from the dense and hot hadronic matter thought to constitute the inner core of the supernova. We perform the first quantitative study of the role of hadronic matter beyond the first generation--in particular strange matter. We do so by consistently including the full baryon and meson octets, and computing axion emissivity induced from baryon-meson to baryon-axion scatterings as well as from baryon decays.
View Article and Find Full Text PDFPhys Rev Lett
March 2024
University of Michigan, Ann Arbor, Michigan 48109, USA.
An explanation for the origin and number of clumps along the equatorial ring of Supernova 1987A has eluded decades of research. Our linear analysis and hydrodynamic simulations of the expanding ring prior to the supernova reveal that it is subject to the Crow instability between vortex cores. The dominant wave number is remarkably consistent with the number of clumps, suggesting that the Crow instability stimulates clump formation.
View Article and Find Full Text PDFScience
February 2024
Institute of Astronomy, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur.
View Article and Find Full Text PDFPhys Rev Lett
August 2023
Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA.
Neutrinos remain mysterious. As an example, enhanced self-interactions (νSI), which would have broad implications, are allowed. At the high neutrino densities within core-collapse supernovae, νSI should be important, but robust observables have been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!