Twenty to thirty percent of people who develop epilepsy continue to have seizures despite antiepileptic drug (AED) treatment. The introduction of many new AEDs in the last two decades does not appear to have reduced substantially the proportion of people who are pharmacoresistant and continue to have seizures. Currently there are two main mechanisms suggested for pharmacoresistance in people with epilepsy: the transporter and target hypothesis. There are inadequacies in both these hypotheses and alternatives should be considered. There is accumulating evidence from animal studies, human physiological measurements and imaging studies that there is impaired mitochondrial energy production in the epileptogenic zone. Impaired mitochondrial function and lower bioenergetic state is associated with higher extracellular glutamate and increased neuronal hyperexcitability. Conversely, the ketogenic diet effective in reducing seizures, has been shown in animal studies to be associated with up-regulation of mitochondrial genes and increased mitochondrial biogenesis. A human imaging study has also shown improved cerebral energy metabolism in people on a ketogenic diet. Hence, the hypothesis is that the likelihood of seizures occurring results mainly from the interplay of three factors: the seizuregenic potential of the epileptic focus, the efficacy of AEDs and the efficiency of mitochondrial function. This hypothesis can be tested by comparing mitochondrial function in people with epilepsy who are pharmacoresistant with those who have become seizure free. The implication of the hypothesis is that the management of epilepsy should take account of the many drugs, toxins, nutrition and lifestyle factors that are known to affect mitochondrial function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2011.06.025 | DOI Listing |
Alzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive development and disruption of neurocognitive function. This neuropathological condition is marked by neurodegeneration, loss of neural tissue, and the formation of neurofibrillary tangles and Aβ plaques. Various studies reported the utilization of phytoconstituents like fisetin, quercetin, berberine, and xanthohumol for the treatment of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!