Smoking accelerates atherosclerosis and is a well-known risk factor for acute cardiovascular complications; however, the mechanisms of these effects have not been completely clarified. Recently developed proteomic approaches may offer new clues when combined with well-established functional tests. Platelet proteome of healthy smokers and non-smokers was resolved by two-dimensional difference gel electrophoresis, compared by Decyder software and identified by mass spectrometry analysis (nano-LC-MS/MS). In smokers, three proteins (Factor XIII-A subunit, platelet glycoprotein IIb and beta-actin) were significantly up-regulated, whereas WDR1 protein and chaperonine HSP60 were down-regulated. Furthermore, the highest scored network derived by Ingenuity Pathway Analysis using the modulated proteins as input showed the involvement of several proteins to be related to inflammation and apoptosis. Platelet function tests and the levels of markers of platelet and leukocyte activation were not different in smokers vs. non-smoker subjects. The platelet proteomic approach confirms that cigarette smoking triggers several inflammatory reactions and may help clarify some of the molecular mechanisms of smoke effect on cellular systems relevant for vascular integrity and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09537104.2011.587916 | DOI Listing |
Stroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom. (Z.S., E.L.H., H.S.M.).
Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.
Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.
Thromb Haemost
January 2025
Department of Bioinformatics, Biocenter, University of Würzburg, Wurzburg, Germany.
Comprehensive characterization of platelets requires various functional assays and analysis techniques, including omics-disciplines, each requiring an individual aliquot of a given sample. Consequently, the sample material per assay is often highly limited rendering downscaling a prerequisite for effective sample exploitation. Here we present a transfer of our recently introduced 96-well-based proteomics workflow (PF96) into the 384-well format (PF384) allowing for a significant increase in sensitivity when processing minute platelet protein amounts.
View Article and Find Full Text PDFBlood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFAnal Chem
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
The role of peripheral blood platelets as indicators of cancer progression is increasingly recognized, and the significance of abnormal glycosylation in platelet function and related disorders is gaining attention. However, the potential of platelets as a source of protein site-specific glycosylation for cancer diagnosis remains underexplored. In this study, we proposed a general pipeline that integrates quantitative proteomics with site-specific glycoproteomics, allowing for an in-depth investigation of the platelet glycoproteome.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.
Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!