Rationale: Alcohol withdrawal is associated with reduced activity, increased anxiety, and other signs of distress.

Objective: The goal of the current studies was to determine whether acute ethanol exposure would alter hypothalamic-pituitary-adrenal (HPA) axis reactivity and cytokine responses to stress challenges imposed during the withdrawal period.

Methods: Male Sprague-Dawley rats were intubated with 4 g/kg of ethanol to simulate acute binge-like ethanol intake. After characterizing the blood ethanol concentrations (BECs; Experiment 1), exploratory activity in a novel environment was explored at 10, 14 and 18 h after ethanol (Experiment 2) to characterize altered activity patterns indicative of withdrawal. In Experiment 3, rats were exposed to footshock during withdrawal to examine whether prior ethanol exposure would alter cytokine and HPA axis responses to stress. Experiments 4 and 5 investigated HPA axis sensitivity and gene expression changes during restraint imposed during withdrawal.

Results: Prior ethanol exposure produced a period of stress hyper-reactivity evidenced by an enhanced HPA axis response (increased corticosterone and adrenocorticotropic hormone) observed during withdrawal. While this hyper-reactivity in response to two different stress challenges (novel environment and restraint) was accompanied by profound behavioral changes indicative of withdrawal, no alterations in cytokine changes evoked by stress were observed.

Conclusions: Taken together, these findings provide support for the hypothesis that alcohol withdrawal enhances HPA axis reactivity to stress challenges, though not likely as the result of heightened inflammatory signaling, and may have implications for understanding the mechanisms by which stress impacts relapse drinking in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192240PMC
http://dx.doi.org/10.1007/s00213-011-2388-zDOI Listing

Publication Analysis

Top Keywords

hpa axis
20
stress challenges
16
responses stress
12
ethanol exposure
12
cytokine responses
8
stress
8
challenges imposed
8
withdrawal
8
imposed withdrawal
8
sprague-dawley rats
8

Similar Publications

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Dysregulation of hypothalamic-pituitary-adrenal axis (HPA axis) and of the autonomic nervous system may link stress throughout the life course with poorer health. This study aims to investigate whether multiple adverse childhood experiences have a long-term impact on markers of these systems - cortisol secretion and heart rate variability - in adulthood. Data were from the Whitehall II cohort study.

View Article and Find Full Text PDF

Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu.

J Xenobiot

January 2025

Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.

Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation.

View Article and Find Full Text PDF

Ginkgolide B as a biopsychosocial treatment salvages repeated restraint stress-induced amygdalar anomalies in mice.

IBRO Neurosci Rep

June 2025

Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.

From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.

View Article and Find Full Text PDF

Stress is a fundamental adaptive response mediated by the amygdala and Hypothalamus-Pituitary-Adrenal (HPA) axis. Extreme or chronic stress, however, can result in a multitude of neuropsychiatric disorders, including anxiety, paranoia, bipolar disorder (BP), major depressive disorder (MDD), and Post-Traumatic Stress Disorder (PTSD). Despite widespread exposure to trauma (70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!