We demonstrate the generation of a nondiffracting double helical beam using axicons and ±1 vortex phase plates in a common-path interferometric system. Using linear diffraction theory, a simple analytical expression describing beam propagation is shown to agree with both experiments and Fresnel-diffraction-based simulations. Experiments are performed using continuous laser light in addition to ultrafast pulses, demonstrating that the common-path arrangement and the diffraction theory work equally well for both cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.28.001462 | DOI Listing |
Bioorg Chem
December 2024
Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:
Membranes that destroy anticancer peptides can bind to negatively charged cancer cell membranes through electrostatic interactions, destroying their functions and leading to cancer cell necrosis. Temporin-1CEa, obtained from the skin secretions of the Chinese frog Rana chensinensis, is an anticancer peptide with 17 amino acid residues that exhibits concentration-dependent cytotoxicity against a variety of cancer cell lines, although it has no obvious cytotoxicity to normal HUVECs. In this work, we designed and synthesized 12 derivative peptides through double-cysteine scanning of temporin-1CEa-truncated peptides.
View Article and Find Full Text PDFChemistry
January 2025
Universite d'Angers, MOLTECH-Anjou Laboratory, 2 Bd Lavoisier, 49045, ANGERS, FRANCE.
Helical foldamers constitute particularly relevant targets in the field of host-guest chemistry, be that as hosts or substrates. In this context, the strategies reported so far to control the dimensions and shape of foldamers mainly involve modifications of the skeleton through covalent synthesis. Herein, we prepared an oligopyridine dicarboxamide foldamer substituted by photo-active tetraphenylethylenes (TPE).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Inner Mongolia Agricultural University, China.
This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.
View Article and Find Full Text PDFGels
December 2024
Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Hydrogels like agarose have long been used as sieving media for the electrophoresis-based analysis of biopolymers. During gelation, the individual agarose strands tend to form hydrogen-bond mediated double-helical structures, allowing thermal reversibility and adjustable pore sizes for molecular sieving applications. The addition of tetrahydroxyborate to the agarose matrix results in transitional chemical cross-linking, offering an additional pore size adjusting option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!