Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234547 | PMC |
http://dx.doi.org/10.1098/rspb.2011.0847 | DOI Listing |
Microbiol Spectr
January 2025
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.
View Article and Find Full Text PDFBiol Open
January 2025
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA.
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.
View Article and Find Full Text PDFZootaxa
November 2024
Instituto de Ciencias Biológicas; Universidad de Ciencias y Artes de Chiapas; Libramiento Norte Poniente 1150; Col. Lajas Maciel; Tuxtla Gutiérrez 29039 Chiapas; México.
Recent ichthyological surveys in southern Mexico resulted in the unexpected discovery of populations of P. chimalapensis outside its distribution range, broadening its extent of occurrence to a total of three river basins (Coatzacoalcos [original], Grijalva, Ostuta) and two versants (Atlantic [original] and Pacific). The taxonomic nature of these populations was further investigated using comparative genetic data in a phylogenetic framework.
View Article and Find Full Text PDFbioRxiv
November 2024
Biology Department, Woods Hole, Massachusetts 02543.
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (), like those in New Bedford Harbor (NBH), Massachusetts, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States.
Environmental contaminants pose a significant selection pressure across taxa, potentiating evolved resistance to chemicals. However, rapid evolution may alter molecular and physiological homeostasis leading to trade-offs. To elucidate molecular underpinnings of evolved chemical resistance, we compared liver gene expression and methylation profiles in polycyclic aromatic hydrocarbon (PAH)-adapted Atlantic killifish () in the Republic site (RP), Elizabeth River, Virginia with PAH-sensitive Kings Creek (KC) fish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!