Background: Six hospitals instituted a voluntary, system-wide, pathway for community acquired pneumonia (CAP). We proposed this study to determine the impact of pathway antibiotics on patient survival, hospital length of stay (LOS), and total hospital cost.

Methods: Data were collected for adults from six U.S. hospitals with a principal CAP discharge diagnosis code, a chest infiltrate, and medical notes indicative of CAP from 2005-2007. Pathway and non-pathway cohorts were assigned according to antibiotics received within 48 hours of admission. Pathway antibiotics included levofloxacin 750 mg monotherapy or ceftriaxone 1000 mg plus azithromycin 500 mg daily. Multivariable regression models assessed 90-day mortality, hospital LOS, total hospital cost, and total pharmacy cost.

Results: Overall, 792 patients met study criteria. Of these, 505 (64%) received pathway antibiotics and 287 (36%) received non-pathway antibiotics. Adjusted means and p-values were derived from Least Squares regression models that included Pneumonia Severity Index risk class, patient age, heart failure, chronic obstructive pulmonary disease, and admitting hospital as covariates. After adjustment, patients who received pathway antibiotics experienced lower adjusted 90-day mortality (p = 0.02), shorter mean hospital LOS (3.9 vs. 5.0 days, p < 0.01), lower mean hospital costs ($2,485 vs. $3,281, p = 0.02), and similar mean pharmacy costs ($356 vs. $442, p = 0.11).

Conclusions: Pathway antibiotics were associated with improved patient survival, hospital LOS, and total hospital cost for patients admitted to the hospital with CAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142517PMC
http://dx.doi.org/10.1186/1471-2334-11-188DOI Listing

Publication Analysis

Top Keywords

pathway antibiotics
20
los total
12
total hospital
12
hospital los
12
hospital
10
patient survival
8
survival hospital
8
regression models
8
90-day mortality
8
hospital cost
8

Similar Publications

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

(P)ppGpp synthetase Rel facilitates cellulose formation of biofilm by regulating glycosyltransferase in Brucella abortus.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:

Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

24-epibrassinolide regulates oxytetracycline-induced phytotoxicity and its detoxification mechanism.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!