The radiation environment in space is complex in terms of both the variety of charged particles and their dose rates. Simulation of such an environment for experimental studies is technically very difficult. However, with the variety of beams available at the National Space Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL) it is possible to ask questions about potential interactions of these radiations. In this study, the end point examined was transformation in vitro from a preneoplastic to a neoplastic phenotype. The effects of 1 GeV/n iron ions and 1 GeV/n protons alone provided strong evidence for suppression of transformation at doses ≤5 cGy. These ions were also studied in combination in so-called mixed-beam experiments. The specific protocols were a low dose (10 cGy) of protons followed after either 5-15 min (immediate) or 16-24 h (delayed) by 1 Gy of iron ions and a low dose (10 cGy) of iron ions followed after either 5-15 min or 16-24 h by 1 Gy of protons. Within experimental error the results indicated an additive interaction under all conditions with no evidence of an adaptive response, with the one possible exception of 10 cGy iron ions followed immediately by 1 Gy protons. A similar challenge dose protocol was also used in single-beam studies to test for adaptive responses induced by 232 MeV/n protons and (137)Cs γ radiation and, contrary to expectations, none were observed. However, subsequent tests of 10 cGy of (137)Cs γ radiation followed after either 5-15 min or 8 h by 1 Gy of (137)Cs γ radiation did demonstrate an adaptive response at 8 h, pointing out the importance of the interval between adapting and challenge dose. Furthermore, the dose-response data for each ion alone indicate that the initial adapting dose of 10 cGy used in the mixed-beam setting may have been too high to see any potential adaptive response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/rr2646.1 | DOI Listing |
Sensors (Basel)
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland.
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China.
Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:
In sulfidic anoxic environments, iron sulfides are widespread solid phases that play an important role in the arsenic (As) biogeochemical cycle. This work investigated the transformation process of FeS-As coprecipitates, the concurrent behavior, and the speciation of associated As under anoxic conditions. The results showed that FeS-As coprecipitates could convert to greigite and pyrite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!