β-Lactam antibiotics have long been a treatment of choice for bacterial infections since they bind irreversibly to Penicillin-Binding Proteins (PBPs), enzymes that are vital for cell wall biosynthesis. Many pathogens express drug-insensitive PBPs rendering β-lactams ineffective, revealing a need for new types of PBP inhibitors active against resistant strains. We have identified alkyl boronic acids that are active against pathogens including methicillin-resistant S. aureus (MRSA). The crystal structures of PBP1b complexed to 11 different alkyl boronates demonstrate that in vivo efficacy correlates with the mode of inhibitor side chain binding. Staphylococcal membrane analyses reveal that the most potent alkyl boronate targets PBP1, an autolysis system regulator, and PBP2a, a low β-lactam affinity enzyme. This work demonstrates the potential of boronate-based PBP inhibitors for circumventing β-lactam resistance and opens avenues for the development of novel antibiotics that target Gram-positive pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb2001846DOI Listing

Publication Analysis

Top Keywords

cell wall
8
wall biosynthesis
8
β-lactam resistance
8
aureus mrsa
8
pbp inhibitors
8
structure-guided design
4
design cell
4
biosynthesis inhibitors
4
inhibitors overcome
4
β-lactam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!