LTX 109 is a synthetic antimicrobial peptidomimetic (SAMP) currently in clinical phase II trials for topical treatment of infections of multiresistant bacterial strains. All possible eight stereoisomers of the peptidomimetic have been synthesized and tested for antimicrobial effect, hemolysis, and hydrophobicity, revealing a strong and unusual dependence on the stereochemistry for a molecule proposed to act on a general membrane mechanism. The three-dimensional structures were assessed using nuclear magnetic resonance spectroscopy (NMR) and molecular dynamics (MD) simulations in aqueous solution and in phospholipid bilayers. The solution structures of the most active stereoisomers are perfectly preorganized for insertion into the membrane, whereas the less active isomers need to pay an energy penalty in order to enter the lipid bilayer. This effect is also found to be reinforced by a significantly improved water solubility of the less active isomers due to a guanidyl-π stacking that helps to solvate the hydrophobic surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm200450hDOI Listing

Publication Analysis

Top Keywords

synthetic antimicrobial
8
antimicrobial peptidomimetic
8
ltx 109
8
active isomers
8
peptidomimetic ltx
4
109 stereochemical
4
stereochemical impact
4
impact membrane
4
membrane disruption
4
disruption ltx
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Removal of antibiotics and their impact on growth, nutrient uptake, and biomass productivity in semi-continuous cultivation of Auxenochlorella protothecoides.

J Environ Manage

January 2025

Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, UK.

The prevalence of antibiotics in wastewater poses risks to human and animal health, contributing to antimicrobial resistance. Although various antibiotic removal methods exist, microalgae-based technology presents a cost-effective and eco-friendly alternative; however, limited research on its long-term integration in semi-continuous wastewater treatment trials hinders our understanding of its potential effectiveness. This investigation explored the antibiotic removal capabilities of the microalga Auxenochlorella protothecoides in photobioreactors with synthetic wastewater under semi-continuous conditions over one month.

View Article and Find Full Text PDF

Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03.

J Hazard Mater

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:

The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.

View Article and Find Full Text PDF

In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives-potential inhibitors of bacterial cystathionine-γ-lyase-namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate () and its 6-bromoindazole analogs ( and ), along with two 6-broindazole analogs of the parent compound .

View Article and Find Full Text PDF

Green chemistry principles are pivotal in driving sustainable and innovative solutions to global health challenges. This study explores a hydroalcoholic extract from (chestnut) burrs, an underutilized natural resource, as a potent source of antimicrobial compounds against (). The extract demonstrated significant bactericidal activity, synergizing effectively with clarithromycin and showing additive effects with metronidazole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!