The control of transcription factor function plays an important role in the development of many processes in eukaryotes, such as drug resistance in fungi and human tumours undergoing chemotherapy. Detailed molecular mapping of the interactions between transcription factors and their protein partners can give important information about their mechanisms of action and reveal potential therapeutic targets. We devised a genetic screening system for mapping the interaction site between the Saccharomyces cerevisiae transcription factor-inhibitor pair Gal4p and Gal80p. A novel Gal4p activation domain mutant, L868K, was produced, which prevented it interacting with Gal80p. The split-ubiquitin system was used with a mutant GAL80 library in order to screen for compensatory mutants in Gal80p which would restore binding with L868K. Five single amino acid residue compensatory mutations in Gal80p which restored the interaction with Gal4p(L868K) were isolated. These compensatory mutations were specific to L868K as they were unable to restore the interaction with two other Gal4p mutants that were incapable of interacting with Gal80p. Mutations within Gal80p that were capable of compensating for Gal4p (L868K) clustered inside a Gal80p surface cleft, supporting the idea that this area is important for Gal4p binding. Our data suggest a way to generate information about interaction sites that should be applicable to any transcription factor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.1861DOI Listing

Publication Analysis

Top Keywords

activation domain
8
transcription factor
8
interacting gal80p
8
compensatory mutations
8
mutations gal80p
8
gal80p
7
gal4p
5
isolation compensatory
4
compensatory inhibitor
4
inhibitor domain
4

Similar Publications

Diversity patterns and knowledge gaps of Atlantic Forest epiphyllous bryophytes: a highly neglected group.

Ann Bot

January 2025

Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.

Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Purpose: Radiotherapy (RT) for oropharyngeal cancer (OPC) can lead to late toxicity. Fatigue is a known debilitating issue for many cancer survivors, yet prevalence and severity of long-term fatigue in patients treated for OPC is unknown.

Method: As part of a mixed-methods study, fatigue in OPC patients ≥ 2 years post RT + / - chemotherapy was evaluated.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!