Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severe sepsis accounts for nearly 4,500 deaths (mortality rate 10%), and is responsible for nearly $2 billion annual healthcare expenditure in the United States. Early and speedy treatment of critically ill septic patients can halt or reduce the likelihood of physiologic progression to multi-system organ failure. A cornerstone of this therapeutic strategy is antibiotic administration. In this review, we discuss the empirical treatment strategies for the treatment of early and late neonatal sepsis, along with pediatric sepsis. Furthermore, we discuss the rationale that underlies the adoption of such treatment strategies. The present article also discusses the emergence of multi-drug organisms as the causative agents for sepsis, i.e. methicillin-resistant Staphylococcus aureus (MRSA), resistant enterococci and Klebsiella pneumoniae carbapenemases (KPC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11908-011-0197-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!