Both endothelial and immune dysfunction contribute to the high mortality rate in human sepsis, but the underlying mechanisms are unclear. In response to infection, interferon-γ activates indoleamine 2,3-dioxygenase (IDO) which metabolizes the essential amino acid tryptophan to the toxic metabolite kynurenine. IDO can be expressed in endothelial cells, hepatocytes and mononuclear leukocytes, all of which contribute to sepsis pathophysiology. Increased IDO activity (measured by the kynurenine to tryptophan [KT] ratio in plasma) causes T-cell apoptosis, vasodilation and nitric oxide synthase inhibition. We hypothesized that IDO activity in sepsis would be related to plasma interferon-γ, interleukin-10, T cell lymphopenia and impairment of microvascular reactivity, a measure of endothelial nitric oxide bioavailability. In an observational cohort study of 80 sepsis patients (50 severe and 30 non-severe) and 40 hospital controls, we determined the relationship between IDO activity (plasma KT ratio) and selected plasma cytokines, sepsis severity, nitric oxide-dependent microvascular reactivity and lymphocyte subsets in sepsis. Plasma amino acids were measured by high performance liquid chromatography and microvascular reactivity by peripheral arterial tonometry. The plasma KT ratio was increased in sepsis (median 141 [IQR 64-235]) compared to controls (36 [28-52]); p<0.0001), and correlated with plasma interferon-γ and interleukin-10, and inversely with total lymphocyte count, CD8+ and CD4+ T-lymphocytes, systolic blood pressure and microvascular reactivity. In response to treatment of severe sepsis, the median KT ratio decreased from 162 [IQR 100-286] on day 0 to 89 [65-139] by day 7; p = 0.0006) and this decrease in KT ratio correlated with a decrease in the Sequential Organ Failure Assessment score (p<0.0001). IDO-mediated tryptophan catabolism is associated with dysregulated immune responses and impaired microvascular reactivity in sepsis and may link these two fundamental processes in sepsis pathophysiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120841 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021185 | PLOS |
Nat Commun
January 2025
Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.
Background: Although MDSCs are widely recognized for their immunoinhibitory effects in pathological conditions, their function during HIV infection particularly within the mechanisms underlying incomplete immune recovery remains elusive.
Methods: We conducted a cross-sectional study in which 30 healthy controls and 62 HIV-1-infected subjects [31 immunological non-responders (INRs) and 31 immunological responders (IRs)] were selected. The proportion of MDSCs was determined in each category of participants.
J Funct Biomater
December 2024
Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol) (DSPE-PEG) to improve the anti-tumor effect of CY1-4.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Paclitaxel (PTX) is a first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC) but it can induce indoleamine 2,3-dioxygenase (IDO) activation, which severely lowers down its immuno-chemotherapeutic effect. To address this issue, a smart peptide hydrogelator Nap-Phe-Phe-Phe-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-T), which co-assembles with PTX and an IDO inhibitor GDC0919 to form a hydrogel GP@Gel Nap-T, is rationally designed. Upon specific phosphorylation by pyruvate kinase M2 (PKM2), an overexpressed biomarker of NSCLC, Nap-T is gradually converted to Nap-Phe-Phe-Phe-Lys-Ser-Thr(HPO)-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-Tp), leading to dehydrogelation and sustained release of PTX and GDC0919 within NSCLC tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!