The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm; (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm; (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) [~ 2% - 5% improvement] and Homogeneity Index (HI) [~ 4% - 10% improvement] as compared to GEM and FSA algorithms; (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are about 20% smoother than those obtained in GEM and FSA algorithms. In summary, the study demonstrates that hybrid algorithms can be effectively used for fast optimization of beam weights in AB-IMRT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119957PMC
http://dx.doi.org/10.4103/0971-6203.79693DOI Listing

Publication Analysis

Top Keywords

hybrid algorithm
32
algorithm
17
beam weights
16
hybrid
12
optimization beam
12
optimization algorithm
12
optimization
8
anatomy-based intensity
8
intensity modulated
8
modulated radiotherapy
8

Similar Publications

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.

Background: Over 13,000 individuals from both domestic and African sites will be collected for the READD-ADSP study. Adjudicating this number of individuals is challenging, so we evaluated knowledge-based decision tree algorithms to predict clinical diagnoses using nationally representative norms and standard cut-offs. Additional models were constructed using culturally adjusted cut-offs, domain average cut-offs, and exclusion of the Trail Making Test (TMT) which performed poorly.

View Article and Find Full Text PDF

GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites.

Brief Bioinform

November 2024

Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.

Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.

View Article and Find Full Text PDF

To balance the convergence speed and solution diversity and enhance optimization performance when addressing large-scale optimization problems, this research study presents an improved ant colony optimization (ICMPACO) technique. Its foundations include the co-evolution mechanism, the multi-population strategy, the pheromone diffusion mechanism, and the pheromone updating method. The suggested ICMPACO approach separates the ant population into elite and common categories and breaks the optimization problem into several sub-problems to boost the convergence rate and prevent slipping into the local optimum value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!