Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(78)90412-5DOI Listing

Publication Analysis

Top Keywords

binding products
4
products metal
4
metal ion
4
ion substrate
4
substrate analog
4
analog rabbit
4
rabbit liver
4
liver fructose
4
fructose bisphosphatase
4
binding
1

Similar Publications

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively.

View Article and Find Full Text PDF

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Rapid Electrochemical Uranium Extraction from Real Seawater via the Intermediate of Vacancy-Trapped Isolated Uranyl.

Inorg Chem

January 2025

State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

Electrochemical uranium extraction from seawater is a vital project for the sustainable development of the nuclear industry, which requires selective intrinsic binding sites for uranyl. In this work, oxygen vacancies (O vacancies) were developed as an atomically identified confinement for uranyl, and thus, rapid uranium extraction from seawater was achieved. In a short period of 700 s, InO nanosheets with rich O vacancies (V-rich InO nanosheets) exhibited a high extraction efficiency of 88.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!