Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/19/29/295101DOI Listing

Publication Analysis

Top Keywords

mwcnt-ti
9
multiwalled carbon
8
carbon nanotubes
8
bone formation
8
ferri/ferrocyanide redox
8
orthopedic implants
8
redox
6
nanotubes enhance
4
enhance electrochemical
4
electrochemical properties
4

Similar Publications

Ultrathin MWCNT/TiCT Hybrid Films for Electromagnetic Interference Shielding.

Nanomaterials (Basel)

December 2024

National Key Laboratory of Scattering and Radiation, Beijing 100854, China.

The disordered assembly and low conductivity of carbon nanotubes are the main problems that limit the application of electromagnetic interference (EMI) shielding. In this work, an ordered lamellar assembly structure of multiwalled carbon nanotube/TiCT (MWCNT/TiCT) hybrid films was achieved by vacuum-assisted filtration through the hybridization of TiCT nanosheets and carbon nanotubes, where carbon nanotubes were tightly sticking on the surface of TiCT nanosheets via physical adsorption and hydrogen bonding. Compared with the pure carbon nanotubes films, the hybrid MWCNT/TiCT films achieved a significant improvement in conductivity of 452.

View Article and Find Full Text PDF

A complex study of the adhesion of multi-walled carbon nanotubes to a titanium surface, depending on the modes of irradiation with He ions of the "MWCNT/Ti" system, was conducted using atomic force microscopy and X-ray photoelectron spectroscopy. A quantitative assessment of the adhesion force at the interface, performed using atomic force microscopy, demonstrated its significant increase as a result of treatment of the "MWCNT/Ti" system with a beam of helium ions. The nature of the chemical bonding between multi-walled carbon nanotubes and the surface of the titanium substrate, which causes this increase in the adhesion of nanotubes to titanium as a result of ion irradiation, was investigated by X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Multiwalled carbon nanotubes (MWCNTs) have shown effectiveness in improving the suitability of MXenes for energy-related applications. However, the ability of individually dispersed MWCNTs to control the structure of MXene-based macrostructures is unclear. Here, the correlation among composition, surface nano- and microstructure, MXenes' stacking order, structural swelling, and Li-ion transport mechanisms and properties in individually dispersed MWCNT-TiC films was investigated.

View Article and Find Full Text PDF

Salt stress will have a serious inhibitory effect on various metabolic processes of plant cells, this will lead to the excessive accumulation of reactive oxygen species (ROS). Hydrogen peroxide (HO) is a type of ROS that can severely damage plant cells in large amounts. Existing methods for assessing the content of HO released from leaves under salt stress will cause irreversible damage to plant leaves and are unable to detect HO production in real time.

View Article and Find Full Text PDF

Ginsenoside Rg3 determination using an electro-synthesized molecularly imprinted polymer on MWCNT-TiCT nanocomposite modified electrode.

Talanta

June 2022

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China. Electronic address:

Rare ginsenoside Rg3 is a main active ingredient in ginseng, which is more easily absorbed by human body and plays its role. Determination of Rg3 in edible and medicinal samples is a key factor for quality evaluation and effective monitoring of adulteration. In this study, an electrochemical sensor was developed based on molecularly imprinted polymer (MIP) and nanomaterial amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!