Anomalous high pressure behaviour in nanosized rare earth sesquioxides.

Nanotechnology

Pressure & Vacuum Standards, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110012, India.

Published: March 2008

AI Article Synopsis

  • The study focuses on Raman spectroscopy of nanosized rare earth sesquioxides (Y(2)O(3), Gd(2)O(3), Sm(2)O(3)) under high pressure, revealing structural behaviors and phase transitions.
  • At ambient conditions, Y(2)O(3) and Gd(2)O(3) exhibit a cubic structure, while Sm(2)O(3) mainly has a cubic form with some monoclinic phase presence.
  • High pressure induces various transformations: Y(2)O(3) transitions to a partial amorphous state, Gd(2)O(3) leads to irreversible phase changes, and Sm(2)O(3

Article Abstract

We report Raman spectroscopic studies of the nanosized rare earth sesquioxides, namely yttrium sesquioxide (Y(2)O(3)), gadolinium sesquioxide (Gd(2)O(3)) and samarium sesquioxide (Sm(2)O(3)), under high pressure. The samples were characterized using x-ray diffraction, Raman spectroscopy and atomic force microscopy at atmospheric pressures. Y(2)O(3) and Gd(2)O(3) were found to be cubic at ambient, while Sm(2)O(3) was found to be predominantly cubic with a small fraction of monoclinic phase. The strongest Raman peaks are observed at 379, 344 and 363 cm(-1), respectively, for Y(2)O(3), Sm(2)O(3) and Gd(2)O(3). All the samples were found to be nanosized with 50-90 nm particle sizes. The high pressures were generated using a Mao-Bell type diamond anvil cell and a conventional laser Raman spectrometer is used to monitor the pressure-induced changes. Y(2)O(3) seems to undergo a crystalline to partial amorphous transition when pressurized up to about 19 GPa, with traces of hexagonal phase. However, on release of pressure, the hexagonal phase develops into the dominant phase. Gd(2)O(3) is also seen to develop into a mixture of amorphous and hexagonal phases on pressurizing. However, on release of pressure Gd(2)O(3) does not show any change and the transformation is found to be irreversible. On the other hand, Sm(2)O(3) shows a weakening of cubic phase peaks while monoclinic phase peaks gain intensity up to about a pressure of 6.79 GPa. However, thereafter the monoclinic phase peaks also reduce in intensity and mostly disordering sets in which does not show significant reversal as the pressure is released. The results obtained are discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/19/11/115703DOI Listing

Publication Analysis

Top Keywords

monoclinic phase
12
phase peaks
12
high pressure
8
nanosized rare
8
rare earth
8
earth sesquioxides
8
hexagonal phase
8
release pressure
8
phase
7
pressure
6

Similar Publications

Photoinduced hidden monoclinic metallic phase of VO driven by local nucleation.

Nat Commun

January 2025

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.

The insulator-to-metal transition in VO has garnered extensive attention for its potential applications in ultrafast switches, neuronal network architectures, and storage technologies. However, the photoinduced insulator-to-metal transition remains controversial, especially whether a complete structural transformation from the monoclinic to rutile phase is necessary. Here we employ the real-time time-dependent density functional theory to track the dynamic evolution of atomic and electronic structures in photoexcited VO, revealing the emergence of a long-lived monoclinic metal phase under low electronic excitation.

View Article and Find Full Text PDF

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.

View Article and Find Full Text PDF

Organic-inorganic hybrid metal halides (OIMHs) with ferroelastic phase transition properties have recently attracted great attention due to their widespread application prospects in the fields of energy storage, sensors, switches, . However, most of the hybrid ferroelastics exhibit phase transition points () far beyond room temperature, which may limit their applications in mechanical switches and energy storage for daily working requirements. Herein, we synthesized a new zinc halide OIMH ferroelastic (,)-[BPHD]ZnBr (BPHD = 1,6-bis(piperidine-1-yl) hexa-2,4-diene diamide), which experiences a 2/1̄ type paraelastic-ferroelastic phase transition at a near-room-temperature of 285 K.

View Article and Find Full Text PDF

Edge Chipping Resistance and Flexural Strength of CAD-CAM Ceramics Before and After Thermomechanical Aging.

J Esthet Restor Dent

December 2024

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.

Objectives: To evaluate the complementary mechanical properties of dental ceramics using edge chipping resistance (Rea) and flexural strength before and after thermomechanical aging.

Material And Methods: Computer-aided design and computer-aided manufacturing of ceramic materials, including zirconia (ZR), lithium disilicate (LS2), and resin nanoceramics (RNC), were evaluated. Specimens for flexural strength testing were fabricated with dimensions of 3 × 4 × 25 mm, with 30 specimens per group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!