Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adsorbed silver nanoparticles were prepared by means of electron beam evaporation of silver on ultra thin Si-supported heptadecafluoro-1-decene plasma polymer films and self-assembled heptadecafluorodecyl-trimethoxysilane monolayers. The morphology of the silver nanoparticles, characterized by their size, size distribution, shape and interparticle separation, was observed to depend on the type, chemical composition and surface energy of the sub-layer as well as the amount of silver deposited. Field emission-scanning electron microscopy was used to study the change in the morphology of the silver nanoparticles as a function of the preparation parameters. The silver nanoparticles on the ultra thin plasma polymer films demonstrated a much smaller and narrower size distribution due to the cross-linking within the film, which more effectively hinders the penetration of silver through the film in comparison to the self-assembled monolayers. Moreover, the optical properties of the resulting silver nanoparticles on the ultra thin fluorocarbon plasma polymers and their correlation to size and size distribution were investigated by spectroscopic ellipsometry in the wavelength range between 300 and 800 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/18/26/265303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!