Large areas of nanopatterns of specific chemical functionality are needed for biological experiments and biotechnological applications. We present nanoscale orthogonal biofunctionalization imprint lithography (NOBIL), a parallel top-down imprinting and lift-off technique based on step-and-flash imprint lithography (SFIL) that is able to create centimetre-scale areas of nanopatterns of two biochemical functionalities. A photoresist precursor is polymerized with a template in place, and the thin resist layer is etched to create an undercut for lift-off. Gold nano-areas on a silicon dioxide background are then independently functionalized using self-assembly that translates the nanopattern into a cell-adhesive/cell-rejective functionality pattern. We demonstrate the technique by creating fibronectin areas down to a pattern size of 60 nm against a polyethylene glycol (PEG) background, and show initial results of cells stably seeded over an array of 1 mm(2) areas of controlled size and pitch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/18/13/135101 | DOI Listing |
Sci Rep
January 2025
Center for Advanced Laser Technologies (CETAL), National Institute for Lasers, Plasma and Radiation Physics, Magurele-Ilfov, 077125, Romania.
Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems.
View Article and Find Full Text PDFLab Chip
January 2025
NASCENT Engineering Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.
Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Physics (DTU Fysik), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Metasurface holography, capable of fully engineering the wavefronts of light in an ultra-compact manner, has emerged as a promising route for vivid imaging, data storage, and information encryption. However, the primary manufacturing method for visible metasurface holography remains limited to the expensive and low-productivity electron-beam lithography (EBL). Here, we experimentally demonstrate the polarization-insensitive visible metasurface holography fabricated by high-throughput and low-cost nanoimprint lithography (NIL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!