Purpose: We use changes in tumor measurements to assess response and progression, both in routine care and as the primary objective of clinical trials. However, the variability of computed tomography (CT) -based tumor measurement has not been comprehensively evaluated. In this study, we assess the variability of lung tumor measurement using repeat CT scans performed within 15 minutes of each other and discuss the implications of this variability in a clinical context.
Patients And Methods: Patients with non-small-cell lung cancer and a target lung lesion ≥ 1 cm consented to undergo two CT scans within a period of minutes. Three experienced radiologists measured the diameter of the target lesion on the two scans in a side-by-side fashion, and differences were compared.
Results: Fifty-seven percent of changes exceeded 1 mm in magnitude, and 33% of changes exceeded 2 mm. Median increase and decrease in tumor measurements were +4.3% and -4.2%, respectively, and ranged from 23% shrinkage to 31% growth. Measurement changes were within ± 10% for 84% of measurements, whereas 3% met criteria for progression according to Response Evaluation Criteria in Solid Tumors (RECIST; ≥ 20% increase). Smaller lesions had greater variability of percent measurement change (P = .005).
Conclusion: Apparent changes in tumor diameter exceeding 1 to 2 mm are common on immediate reimaging. Increases and decreases less than 10% can be a result of the inherent variability of reimaging. Caution should be exercised in interpreting the significance of small changes in lesion size in the care of individual patients and in the interpretation of clinical trial results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157977 | PMC |
http://dx.doi.org/10.1200/JCO.2010.33.7071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!