Inhibitors of the serotonin transporter (SERT) and norepinephrine transporter (NET) are widely used in the treatment of major depressive disorder. Although SERT/NET selectivity is a key determinant for the therapeutic properties of these drugs, the molecular determinants defining SERT/NET selectivity are poorly understood. In this study, the structural basis for selectivity of the SERT selective inhibitor citalopram and the structurally closely related NET selective inhibitor talopram is delineated. A systematic structure-activity relationship study allowed identification of the substituents that control activity and selectivity toward SERT and NET and revealed a common pattern showing that SERT and NET have opposite preference for the stereochemical configuration of these inhibitors. Mutational analysis of nonconserved SERT/NET residues within the central substrate binding site was performed to determine the molecular basis for inhibitor selectivity. Changing only five residues in NET to the complementary residues in SERT transferred a SERT-like affinity profile for R- and S-citalopram into NET, showing that the selectivity of these compounds is determined by amino acid differences in the central binding site of the transporters. In contrast, the activity of R- and S-talopram was largely unaffected by any mutations within the central substrate binding site of SERT and NET and in the outer vestibule of NET, suggesting that citalopram and talopram bind to distinct sites on SERT and NET. Together, these findings provide important insight into the molecular basis for SERT/NET selectivity of antidepressants, which can be used to guide rational development of unique transporter inhibitors with fine-tuned transporter selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141962 | PMC |
http://dx.doi.org/10.1073/pnas.1103060108 | DOI Listing |
J Anal Toxicol
January 2025
Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Horsham, PA.
Identification of N,N-dimethylpentylone (DMP) in counterfeit "Ecstasy" and "Molly" tablets poses risk to public health due to its adverse effects. Little information is available regarding the pharmacological activity or relevant blood or tissue concentrations of DMP, and even less is known about other structurally related beta-keto methylenedioxyamphetamine analogues on recreational drug markets, such as N-propyl butylone. Here, a novel toxicological assay utilizing liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ-MS) was developed and validated for the quantitation of DMP and five related synthetic cathinones (eutylone, pentylone, N-ethyl pentylone (NEP), N-propyl butylone, and N-cyclohexyl butylone), with chromatographic resolution from isomeric variants and quantitation performed by standard addition.
View Article and Find Full Text PDFBMC Chem
January 2025
LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal.
Mood disorders affect the daily lives of millions of people worldwide. The search for more efficient therapies for mood disorders remains an active field of research. In silico approaches can accelerate the search for inhibitors against protein targets related to mood disorders.
View Article and Find Full Text PDFMolecules
November 2024
School of Pharmacy, Nanjing Tech University, 30th South Puzhu Road, Nanjing 211816, China.
In this research, a variety of novel amphetamine derivatives were synthesized and assessed for their potential as multifaceted antidepressant agents. Among these compounds, compound demonstrated potent inhibitory effects on both serotonin and noradrenaline transporters (SERT/NET) and high affinity for histamine H receptor (HR), and displayed low affinity for off-target receptors (H1, α1) and hERG channels, which can reduce the prolongation of the QT interval. Molecular docking studies offered a rational binding model of compound when it forms a complex with SERT, NET, and the histamine H receptor.
View Article and Find Full Text PDFSci Adv
November 2024
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland.
We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT) and dopamine (D) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds and emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!