A DNA assembly model of sentence generation.

Biosystems

Graduate Program in Bioinformatics, Seoul National University, Simlim-dong, Gwanak-gu, Republic of Korea.

Published: October 2011

Recent results of corpus-based linguistics demonstrate that context-appropriate sentences can be generated by a stochastic constraint satisfaction process. Exploiting the similarity of constraint satisfaction and DNA self-assembly, we explore a DNA assembly model of sentence generation. The words and phrases in a language corpus are encoded as DNA molecules to build a language model of the corpus. Given a seed word, the new sentences are constructed by a parallel DNA assembly process based on the probability distribution of the word and phrase molecules. Here, we present our DNA code word design and report on successful demonstration of their feasibility in wet DNA experiments of a small scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2011.06.007DOI Listing

Publication Analysis

Top Keywords

dna assembly
12
assembly model
8
model sentence
8
sentence generation
8
constraint satisfaction
8
dna
7
generation corpus-based
4
corpus-based linguistics
4
linguistics demonstrate
4
demonstrate context-appropriate
4

Similar Publications

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Mitochondrial DNA Structure in .

Pathogens

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb).

View Article and Find Full Text PDF

The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.

View Article and Find Full Text PDF

Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!