AI Article Synopsis

  • The single particle and single molecule approach has gained popularity in studying biological molecules, but traditionally observed samples in vitro lacked the context of their natural cellular environment.
  • Recent advancements allow researchers to extend this method to living cells, providing insights into cellular processes at the molecular level.
  • This review highlights the use of semiconductor quantum dots for single particle tracking in cells, focusing on their role in intracellular transport and molecular motor activity as effective fluorescent nano-reporters.

Article Abstract

In the last two decades, the single particle and single molecule approach became more and more popular to investigate the activity and the mechano-chemical properties of biological molecules. The inherent limit of these assays was that the molecules of interest were observed in vitro, out of their natural environment, the cell. Several recent works have shown the possibility to overcome this limit, to extend this approach to living cells and to observe the details of many cellular processes at the molecular level. In this review we discuss the use of semiconductor quantum dots to perform single particle and single molecule tracking in the cell. We refer to other articles for the technical aspects of this method. Here, after an introduction on the advantages provided by these nanoparticles, we restrict ourselves to some examples, mainly related to intracellular transport and molecular motor activity. These will illustrate the important role played by semiconductor quantum dots as fluorescent nano-reporters in in cell single molecule approach in modern biology and biophysics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2011.06.004DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
single molecule
12
living cells
8
single particle
8
particle single
8
molecule approach
8
semiconductor quantum
8
single
6
dots tail
4
tail single
4

Similar Publications

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!