In this study, we found that Cysteine-rich with EGF-like domains 2 (CRELD2), a novel endoplasmic reticulum stress-inducible protein, is not only localized in the ER-Golgi apparatus but also spontaneously secreted. Deletion of four C-terminal amino acids from mouse CRELD2 or addition of tag-peptides to its C-terminus dramatically enhanced CRELD2 secretion. Intra- and extra-cellular CRELD2 is differentially glycosylated and its spontaneous secretion was significantly prevented by overexpression of a dominant negative mutant Sar1 and treatment with brefeldin A. Overexpression of wild-type GRP78 remarkably enhanced the secretion of wild-type but not mutant CRELD2. Our results demonstrate both that CRELD2 is a novel secretory glycoprotein regulated by Sar1 and GRP78 and that the C-terminal of CRELD2 plays a crucial role in its secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2011.06.029 | DOI Listing |
Nat Cardiovasc Res
February 2024
Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany.
Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically.
View Article and Find Full Text PDFInt J Biol Macromol
July 2023
State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China. Electronic address:
Scavenger receptors (SRs), as multifunctional pattern recognition receptors, play an important role in innate immunity in mammals, however, their function in fish is limited. Herein, scavenger receptor F2 in Epinephelus coioides (EcSRECII) induced an innate immune response to LPS in GS cells. EcSRECII markedly enhanced LPS-induced NF-κB and IFN-β signaling pathways, whereas knockdown of EcSRECII significantly inhibited LPS-induced NF-κB and IFN-β promoter activation.
View Article and Find Full Text PDFJ Biomed Sci
May 2023
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton.
View Article and Find Full Text PDFSci Rep
September 2022
Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
Lipopolysaccharides (LPS) are highly toxic compounds, even at a trace amount. When recombinant proteins are produced in E. coli, it is inevitable that LPS contaminates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!