AMD3100 (Plerixafor) is an antagonist of CXCR4, receptor for stromal cell-derived factor-1 (SDF-1).It disrupts binding of SDF-1 to CXCR4 by competing binding site, thus blocking the physiological function of SDF-1/CXCR4 axis. SDF-1/CXCR4 axis has been shown to play critical roles in stem cell mobilization, migration and homing, and in immunoregulation, inflammatory disease, autoimmune disorder, embryonic development, and tumor cell proliferation, migration and location. AMD3100 has been confined effective for the mobilization of HSC and MSC, inhibition of carcinoma growth and metastasis, suppression of some inflammatory and autoimmune disorder. Therefore, further research on AMD3100 will be helpful to understand the effects of bone marrow microenvironment on the pathogenesis of neoplasm, and to restore the traumatic tissues by mobilizing HSC effectively, that might provide a new idea and measure for the treatment of certain neoplasms. Some research progress of basic research and application on AMD3100 are summarized in this review.
Download full-text PDF |
Source |
---|
Theriogenology
March 2025
Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China. Electronic address:
Background: The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China.
Chronic stress is a common cause of hair loss, involving inflammatory responses and changes in cellular signaling pathways. This study explores the mechanism of action of the SDF-1/CXCR4 signaling axis in chronic stress-induced hair loss. The research indicates that SDF-1 promotes hair follicle growth through the PI3K/Akt and JAK/STAT signaling pathways.
View Article and Find Full Text PDFCells
August 2024
Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression.
View Article and Find Full Text PDFNeurourol Urodyn
November 2024
The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China.
Background: Intravenous injection of adipose-derived stem cells (ADSCs) can improve the urinary function of stress urinary incontinence (SUI) model rats and C-X-C chemokine receptor type 4 (CXCR4)-positive ADSCs are found in urethral tissues. The CXCR4 ligand stromal cell-derived factor-1 (SDF-1) is highly expressed in urinary incontinence model rats. In this study, we investigated the involvement of the SDF-1/CXCR4 axis in the homing of ADSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!