Unlabelled: In the present study, a total of 116 lactic acid bacteria (LAB) strains isolated from Mill flour and fermented cassava were screened for their antifungal activity. Three strains among 116 were selected for their strongest inhibitory activity against food molds. These 3 strains were Lactobacillus plantarum VE56, Weissella cibaria FMF4B16, and W. paramesenteroides LC11. The compounds responsible for the antifungal activity were investigated. The strains displayed an inhibitory activity against targeted molds at acidic pH. However, the influence of organic acids was rejected according to the calculated minimal inhibitory concentration (MIC). Antifungal compounds were investigated in the cell-free supernatants and phenyllactic acid (PLA) was detected in different amounts with a maximal concentration for Lb. plantarum VE56 (0.56 mM). Hydroxy fatty acid, such as 2-hydroxy-4-methylpentanoic acid, was also produced and involved in the inhibitory activity of Lb. plantarum VE56 and W. paramesenteroides LC11. Antifungal LAB are known to produce PLA and 3-hydroxy fatty acids and other organic acids with antifungal activity. This short communication focuses on antifungal activity from Weissella genus. The antifungal activity was attributed to antifungal compounds identified such as PLA, 2-hydroxy-4-methylpentanoic acid, and other organic acids. Nevertheless, the concentration produced in the cell-free supernatant was too low to compare to their MIC, suggesting that the inhibitory activity was caused by a synergy of these different compounds.
Practical Application: Antifungal LAB are interesting to prevent food spoilage in fermented food and prolong their shelf life. In this way, chemical preservatives could be avoided and replaced by natural preservatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2011.02257.x | DOI Listing |
Eur J Med Chem
January 2025
State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China. Electronic address:
Pyrimidines are aromatic, heterocyclic organic compounds characterized by a six-membered ring that contains four carbon atoms and two nitrogen atoms. They have been reported to exhibit a variety of biological activities such as antifungal, antiviral, and anti-Parkinsonian effects. Recently, there has been an increased focus on their potential anti-Alzheimer's properties.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Cellular Toxicology, Faculty of Science, Department of Biology, Badji Mokhtar University, Annaba, Algeria.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
A medicinal plant is any plant that in one or more of its organs contains substances that can be used by it or their constituent for therapeutic purposes. The present work was done to evaluate pharmacognostic, fluorescence, proximate and phytochemical analysis of ethanolic extracts of Cistanche tubulosa (Orobanchaceae) along with antimicrobial activity. Antimicrobial activity against four bacterial strains S.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!