Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The vast majority of the available literature regarding cardiovascular oscillations refers to spontaneously breathing subjects. Only a few studies investigated cardiovascular oscillations, and especially respiration-related ones (RCVO), during intermittent positive pressure mechanical ventilation (IPPV) under anaesthesia. Only a handful considered assisted IPPV, in which spontaneous breathing activity is supported, rather than replaced as in controlled IPPV. In this paper, we review the current understanding of RCVO physiology during IPPV, from literature retrieved through PubMed website. In particular, we describe how during controlled IPPV under anaesthesia respiratory sinus arrhythmia appears to be generated by non-neural mechano-electric feedback in the heart (indirectly influenced by tonic sympathetic regulation of vascular tone and heart contractility) and not by phasic vagal modulation of central origin and/or baroreflex mechanisms. Furthermore, assisted IPPV differs from controlled IPPV in terms of RCVO, reintroducing significant central respiratory vagal modulation of respiratory sinus arrhythmia. This evidence indicates against applying to IPPV interpretative paradigms of RCVO derived from spontaneously breathing subjects, and against considering together IPPV and spontaneously breathing subjects for RCVO-based risk assessment. Finally, we highlight the opportunities that IPPV offers for future investigations of RCVO genesis and interactions, and we indicate several possibilities for clinical applications of RCVO during IPPV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/BMT.2011.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!