Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the behaviors of molecules in tight confinement is a challenging task. Standard simulation tools like kinetic Monte Carlo have proven to be very effective in the study of adsorption and diffusion phenomena in microporous materials, but they turn out to be very inefficient when simulation time and length scales are extended. In this paper we have explored the possibility of application of a discrete version of the synchronous parallel kinetic Monte Carlo algorithm introduced by Martínez et al. [J. Comput. Phys. 227, 3804 (2008)] to the study of aromatic hydrocarbons diffusion in zeolites. The efficiency of this algorithm is investigated as a function of the number of processors and domain size. We show that with an accurate choice of domains size it is possible to achieve very good efficiencies thus permitting us to effectively extend space and time scales of the simulated system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.83.056705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!