Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks and provide suggestive ideas for studying and controlling oscillations in neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.83.056204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!