Background And Objectives: The failure of existing treatments for liver cancer has recently been attributed to the existence of cancer stem cells, which are difficult to kill using current drugs due to their chemoresistant properties as well as their ability to stimulate neoangiogenesis. The aim of the current study was to evaluate in vitro the antitumor efficacy of arsenic trioxide in combination with conventional chemotherapy, as proposed by the concept of "differentiation therapy" in anticancer research.
Materials And Methods: Cancer stem cells showed enhanced chemoresistance to cancer drugs (carboplatin and doxorubicin) and had the ability to exclude rhodamine 123 dye, proving the existence of the multidrug resistance efflux pump. Arsenic trioxide was added prior to a tyrosine kinase inhibitor or to a slightly modified PIAF regimen with capecitabine replacing 5-fluorouracil. We also compared both cancer and normal stem cell lines with the hepG2 non-stem liver cancer cell line to investigate the differences between differentiated and more anaplastic cells. Molecular characterization (immunocytochemistry and RT-PCR analysis) of all the cell lines was carried out.
Results: Initially, the cells had a high proliferative potential, even when cultured in a medium supplemented with cytostatics, eliminated rhodamine 123 immediately in culture and also formed spheroids in suspension. The molecular characterization showed the expression of albumin, α1-antitrypsin, α-fetoprotein, citokeratin-18, telomerase, CD90 and CD133. Low concentrations of arsenic trioxide lead to morphologic differentiation and differentiation-associated cytochemical features, like increased sensitivity to cytostatic drugs.
Conclusion: Our study suggests that arsenic trioxide sensitizes liver stem-like cancer cells to conventional chemotherapy. Still, further studies on animal models will be needed before we implement this idea in human clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5144/1658-3876.2011.60 | DOI Listing |
The prognosis for patients with acute promyelocytic leukemia (APL) has improved dramatically since the introduction of all-trans retinoic acid (ATRA) and intravenous arsenic trioxide (ATO). However, ATO administration requires daily infusions over several months, representing an onerous burden for hospitals and patients. We evaluated the bioavailability of a novel encapsulated oral ATO formulation in APL patients in first complete remission during standard-of-care consolidation.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
Background: Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) . Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early.
View Article and Find Full Text PDFHaematologica
January 2025
Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Chinese Institutes for Medical Research, Beijing.
Not available.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.
View Article and Find Full Text PDFOvarian clear cell carcinoma (OCCC), particularly advanced or recurrent settings, is generally resistant to platinum-based chemotherapy, warranting novel therapeutic strategies. Mutations in the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase (PI3K/AKT/mTOR) pathway are frequently reported in OCCC. Therefore, we hypothesized that the PI3K/mTOR dual inhibitor, GSK458, and arsenic trioxide may exert synergistic anti-tumor effects on OCCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!