Selective growth of amorphous silica nanowires on a silicon wafer deposited with Pt thin film is reported. The mechanism of nanowire growth has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Nanowires grow with diameters ranging from 50 to 500 nm. These bottom-up grown nanowires exhibit photoluminescence with a stable emission of blue light at 430 nm under excitation. The effect of varying the seed layer thickness (Pt film) from 2 to 100 nm has been studied. It is observed that, above 10 nm thickness, a continuous layer of Pt(2)Si re-solidifies on the surface, inhibiting the growth of nanowires. The selectivity to the Pt thickness has been exploited to create regions of nanowires connected to conducting silicide (Pt(2)Si) simultaneously in a single furnace treatment. This novel approach has opened the gateways for realizing hybrid interconnects in silicon for various nano-optical applications such as the localization of light, low-dimensional waveguides for functional microphotonics, scanning near-field microscopy, and nanoantennae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/17/18/013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!