Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to reverse the magnetization of nanomagnets by current injection has attracted increased attention ever since the spin-transfer torque mechanism was predicted in 1996. In this paper, we review the basic theoretical and experimental arguments supporting a novel current-induced spin torque mechanism taking place in ferromagnetic (FM) materials. This effect, hereafter named spin-orbit (SO) torque, is produced by the flow of an electric current in a crystalline structure lacking inversion symmetry, which transfers orbital angular momentum from the lattice to the spin system owing to the combined action of SO and exchange coupling. SO torques are found to be prominent in both FM metal and semiconducting systems, allowing for great flexibility in adjusting their orientation and magnitude by proper material engineering. Further directions of research in this field are briefly outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2010.0336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!