There are so many kinds of peroxisome proliferator-activated receptor α (PPARα) ligands with hazardous effect for human health in the environment, such as certain herbicides, plasticizers and drugs. Among these agonists, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and mono-(2-ethylhexyl) phthalate (MEHP) are mostly investigated due to their persistence and accumulation in environment and their potential toxicity via PPARα. This investigation aims at developing a bioassay method to detect PPARα ligands based on the ligand-receptor interaction on microplate. PPARα, which formed heterodimers with retinoid X receptor-α (RXRα), were activated by PPARα ligands to form ligands-PPARα-RXRα complexes. Then the complexes were transferred into a microplate and captured via monoclonal anti-PPARα antibody. The PPARα responsive elements (PPRE) modified-gold nanoparticle probes were captured by the ligand-PPARα-RXRα complexes immobilized on the microplate, and then could be quantified through measuring the optical density after silver enhancement. The results showed that PFOS was quantified with a linear range from 100 pM to 1 μM and the detection limit was 10 pM. In addition to PFOS, PFOA and MEHP were also quantified within a proper range through the proposed bioassay. This bioassay was compared with that of liquid chromatography tandem-mass spectrometry (LC-MS) for water spiked samples with a significant correlation (r = 0.9893). This study provides a high-throughput detection method for PPARα ligands in microplate with high sensitivity and wide linear range. It may serve as an assistant of LC-MS for prescreening of PPARα ligands like PFOS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2011.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!