Electromagnetic fields (EMFs) have been used clinically to slow down osteoporosis and promote fracture healing for many years. However, the underlying action mechanisms and optimal parameters of the EMF applications are unclear. In this study, we investigated the effects of treatment for different durations with 50 Hz sinusoidal electromagnetic fields (SEMFs) at different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Osteoblasts isolated from neonatal rats were treated with SEMFs (50 Hz at 0.9 mT-4.8 mT, 0.3 mT interval, 30 min/day up to 15 days). Compared to untreated control, SEMFs inhibited osteoblast proliferation (after 3 days' treatment) but increased alkaline phosphatase (ALP) activity (after treatment for 9 days) from 0.9 mT to 1.8 mT, declined from 1.8 mT until 3.0 mT, and then increased again from 3.0 mT to 3.6 mT and decreased once again from 3.6 mT to 4.8 mT. Numbers of colonies stained positive for ALP after 8 days and mineralized nodules stained by Alizarin red after 10 days showed the same bimodal tendency as with the ALP activity, with two peaks at 1.8 mT and 3.6 mT. SEMFs also bimodally increased Runx-2, Col1α2 and Bmp-2 mRNA expression levels in osteoblasts at 12, 24 and 96 h after exposure. The results indicated that while exposure to 50 Hz SEMFs inhibits the osteoblast proliferation, it significantly promotes differentiation and mineralization potentials of osteoblasts in an intensity-dependent manner with peak activity at 1.8 mT and 3.6 mT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2011.06.026 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.
Int J Radiat Biol
January 2025
Department of Biocybernetics, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Tbilisi, Georgia.
Purpose: This paper reports a study of electromagnetic field (EMF) exposure of several adult insects: a ladybug, a honey bee worker, a wasp, and a mantis at frequencies ranging from 2.5 to 100 GHz. The purpose was to estimate the specific absorption rate (SAR) in insect tissues, including the brain, in order to predict the possible biological effects caused by EMF energy absorption.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopedic Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA.
This review examines intrinsic and extrinsic augmentation techniques for uniting hand and upper extremity fractures, including bone morphogenic proteins (BMPs), platelet-rich plasma (PRP), low-intensity pulsed ultrasound (LIPUS), and pulsed electromagnetic fields (PEMF). While BMPs, PRP, LIPUS, and PEMF show potential in accelerating bone healing and reducing nonunion rates, their clinical adoption is limited by high costs and inconsistent results. This paper focuses on understanding the efficacy of these techniques, their drawbacks, and potential next steps for the field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!